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Abstract. To make predictions about the effect of rising global surface temperatures, we rely on mathematical soil 

biogeochemical models (SBMs). However, it is not clear which models have better predictive accuracy, and a 14 
rigorous quantitative approach for comparing and validating the predictions has yet to be established. In this study, 

we present a Bayesian approach to SBM comparison that can be incorporated into a statistical model selection 16 
framework.  

We compared the fits of a linear and non-linear SBM to soil respiration CO2 flux data compiled in a recent 18 
meta-analysis of soil warming field experiments. Fit quality was quantified using two Bayesian goodness-of-fit 

metrics, the Widely Applicable information criterion (WAIC) and Leave-one-out cross-validation (LOO). We found 20 
that the linear model generally out-performed the non-linear model at fitting the meta-analysis data set. Both WAIC 

and LOO computed a higher overfitting penalty for the non-linear model than the linear model, conditional on the 22 
data set. Fits for both models generally improved when they were initialized with lower and more realistic steady 

state soil organic carbon densities.  24 
Testing whether linear models offer definitively superior predictive performance over non-linear models on 

a global scale will require comparisons with additional site-specific data sets of suitable size and dimensionality. 26 
Such comparisons can build upon the approach defined in this study to make more rigorous statistical 

determinations about model accuracy while leveraging emerging data sets, such as those from long-term ecological 28 
research experiments. 

1 Introduction 30 

Coupled Earth system models (ESMs) and constituent soil biogeochemical models (SBMs) are used to 

simulate global soil organic carbon (SOC) dynamics and storage. As global climate changes, some ESM and SBM 32 
simulations suggest that substantial SOC losses could occur, resulting in greater soil CO2 emissions (Crowther et al., 

2016). However, there is vast divergence between model predictions. For instance, one ESM predicts a global SOC 34 
loss of 72 Pg C over the 21st century, while another predicts a gain of 253 Pg C (Todd-Brown et al., 2014). 

Soil biogeochemical models vary in structure (Manzoni and Porporato, 2009), but can be broadly 36 
partitioned into two categories: those that implicitly represent soil C dynamics as first-order linear decay processes 

and those that explicitly represent microbial control over C dynamics with non-linear Michaelis-Menten functions 38 
(Wieder et al., 2015). Explicit models typically include more parameters than linear models because multiple 

microbial parameters are needed for each decay process as opposed to a single rate parameter. The additional 40 
parameters allow explicit models to represent microbial mechanisms, but at the expense of greater model 

complexity. 42 
Rigorous statistical approaches should be applied to investigate how explicit representation of microbial 

processes affects predictive model performance. ESM and SBM comparisons involving empirical soil C data 44 
assimilations have been conducted previously (Allison et al., 2010; Li et al., 2014) but few standardized statistical 

methods for ESM and SBM benchmarking and comparison have been developed that would allow for rigorous 46 
model selection. Prior model comparisons have involved graphical qualitative comparisons or use of basic fit 
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metrics such as the coefficient of determination, R2, to judge fit quality. However, these simple approaches are 48 
insufficient for comparing an increasing number of complex models (Jiang et al., 2015; Luo et al., 2016; Wieder et 

al., 2015). 50 
Encouragingly, a rich toolset for quantitative model evaluation and comparison can be drawn from 

Bayesian statistics. These tools include information criteria and cross-validation, goodness-of-fit metrics designed 52 
for the simultaneous comparison of multiple structurally diverse models. Like R2, information criteria and cross-

validation are quantitative measures that estimate the fit quality of a model to a given data set. Differing from R2, 54 
information criteria and cross-validation are relative rather than absolute measures. These metrics evaluate the extent 

to which the data set supports particular distributions of parameter values and in turn, the uncertainty of parameter 56 
estimates. Consequently, if the distribution of Model A outcomes aligns more closely to the data set than the 

distribution of Model B outcomes, we regard Model A as being more likely to explain the data compared to Model 58 
B. Information criteria and cross-validation metrics also typically include terms penalizing for model complexity 

and overfitting as part of their computation (Gelman et al., 2014). Hence, information criteria and cross-validation 60 
are useful tools for model evaluation because they present a comprehensive summary of model fit to data.  

In contrast, R2 provides less information about goodness-of-fit. It quantifies the extent to which the 62 
variation of just one model outcome, perhaps the mean outcome for a range of parameter values, corresponds to the 

variation in the data set. R2 does not capture model complexity, overfitting, or parameter uncertainty, which is a 64 
reason why R2 by itself is not sufficient for model evaluation. Without accounting for model complexity and 

parameter count, focusing on optimizing fit by R2 values alone can easily lead to overfitting.   66 
Well-known examples of information criteria include the Akaike information criterion (AIC) and Deviance 

information criterion (DIC) (Gelman et al., 2014). However, these two metrics have some limitations. Neither AIC 68 
nor DIC use full sampled posterior distributions in their computations. Additionally, the original formulations of 

AIC and DIC are more limited and less stable in their ability to account for overfitting and parameter count (Gelman 70 
et al., 2014).  

Two more recently developed metrics, the Widely Applicable information criterion (WAIC) and Leave-72 
one-out cross-validation (LOO), address the stability and parameter count issues and improve upon AIC and DIC by 

using the full posterior distribution (Gelman et al., 2014; Vehtari et al., 2017). WAIC and LOO also estimate the 74 
relative potentials of models for fitting measurements not included within the existing observed data set. Thus, 

WAIC and LOO can be used as barometers for model predictive accuracy. 76 
 The overarching goal of this study was to develop a statistically rigorous and mathematically consistent 

data assimilation framework for SBM comparison that uses predictive Bayesian goodness-of-fit metrics. We 78 
pursued three specific objectives as part of that goal. First, we compared the behaviors of two different models, one 

linear and one non-linear, following data assimilation with soil respiration data. Second, we characterized the 80 
parameter spaces of these models using prior probability distributions of parameter values informed by previous 

studies and expert judgment. Third, we compared specific Bayesian predictive information criteria, including WAIC 82 
and LOO, to the coefficient of determination, R2, for quantifying goodness-of-fit to data. 

2 Methods 84 

2.1 Model Structures 

We analyzed the fit of two SBMs, the CON (conventional) and AWB (Allison-Wallenstein-Bradford) 86 
models (Allison et al., 2010). CON is a linear ordinary differential equation system, while AWB is a non-linear 

system (Supplemental Appendix 1). The models were chosen for this study due to their mathematical simplicity and 88 
limited data input requirements. Additionally, they were chosen because they are C-only models without nitrogen 

(N) pools. The increased complexity of N-accounting SBMs will require future studies with coupled N data sets 90 
(Manzoni and Porporato, 2009).  

2.2 Meta-analysis Data 92 

The data set was based on 27 soil warming studies that measured CO2 fluxes and were compiled in a recent 

soil warming meta-analysis (Romero-Olivares et al., 2017). The experiments reported between 1 and 13 years of 94 
CO2 flux measurements following warming perturbation. Models were fit to response ratios calculated by dividing 

CO2 fluxes measured in the warming treatments by paired CO2 fluxes measured in the control treatments. We 96 
calculated an annual mean response ratio for each experiment and each year available after treatment began. Using 
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these annual means, we calculated one overall mean response ratio for each year along with pooled variances and 98 
standard deviations. Pooled data points were assumed to be “collected” at the halfway point of each year.  

Because the experiments had variable lengths, the sample size for the pooled annual mean declines with 100 
increasing time since warming perturbation. The warming perturbation was 3°C on average across all the studies, 

and this average was used as the magnitude of warming in the model simulations. Model output response ratios were 102 
calculated by dividing simulated CO2 flux following warming perturbation by the CO2 flux at steady state. 

We chose to fit the response ratios rather than raw flux measurements for several reasons. First, there is no 104 
need to convert flux measurements from different experiments into a common unit. Second, response ratios 

represent a standardized metric for warming response across disparate ecosystem types with varying climate, soil, 106 
and vegetation properties. Finally, fitting a mean response ratio overcomes data gaps present in individual 

experiments.  108 

2.3 Markov Chain Monte Carlo Fitting 

 We performed model fitting using a Markov chain Monte Carlo (MCMC) algorithm called the Hamiltonian 110 
Monte Carlo (HMC), using version 2.17 of the RStan interface to the Stan statistical software (Carpenter et al., 

2017; Guo et al., 2019) to collect posterior distributions and posterior predictive distributions. Posterior distributions 112 
are the distributions of more likely model parameter values conditional on the data. Posterior predictive distributions 

are the distributions of more likely values for unobserved data points from the data-generating process conditional 114 
on the observations. In the case of this study, the experiments constituting the meta-analysis would be the data-

generating process. 116 
Differential equation models contain parameters that affect state variables, and model-fitting through 

MCMC involves iterating through parameter space one set of parameters at a time. HMC is not a random walk 118 
algorithm and uses Hamiltonian mechanics to determine exploration steps in parameter space. HMC has been 

theorized to offer more efficient exploration of high-dimensional parameter space than traditional Random-Walk 120 
Metropolis algorithms (Beskos et al., 2013). 

In the process of fitting and exploring parameter space with MCMCs, we obtained samples from the 122 
posterior distributions of parameter values. Bayesian inference is highly reliant on these distributions, as they 

provide information about probability densities for parameter values for a given data set. For each HMC run, we ran 124 
four chains for 45,000 iterations each, with the first 20,000 iterations being discarded as burn-in in each chain. 

Hence, our posterior distributions consisted of 100,000 posterior samples per HMC run. To minimize the presence 126 
of divergent energy transitions, which indicate issues with exploring the geometry of the parameter space specified 

by the prior distributions, we set the adaptation and step size HMC parameters respectively to 0.9995 and 0.001. 128 
These parameters control how the HMC algorithm proposes new sets of parameters at each step.  

We further constrained our HMC runs to characterize parameter regimes corresponding to higher biological 130 
realism. Normal informative priors were used to initiate the runs, and the prior distribution parameters were chosen 

based on expert opinion and previous empirical observations (Allison et al., 2010; Li et al., 2014). Prior distributions 132 
had non-infinite supports; supports were truncated to prevent the HMC from exploring parameter space that was 

unrealistic (Supplemental Table 2).  134 

2.4 Model Steady State Initialization 

Because we were mainly interested in testing model predictions of soil warming response, the models were 136 
initiated at steady state prior to the introduction of warming perturbation to isolate model warming responses from 

steady state attraction. We fixed pre-perturbation steady state soil C densities to prevent HMC runs from exploring 138 
parameter regimes corresponding to biologically unrealistic C pool densities and mass ratios. 

To set pre-warming steady state soil C densities, we first analytically derived steady state solutions of the 140 
ordinary differential equations of the models. Then, with the assistance of Mathematica version 12, we re-arranged 

the equations by moving the steady state pool sizes to the left-hand side (Supplemental Appendix 2), such that we 142 
could determine the value of parameters dependent on pool sizes while allowing the rest of the parameters to vary 

for the HMC. Consequently, we could constrain the pre-warming pool sizes from reaching unrealistic values in the 144 
simulations. 

2.5 Sensitivity Analysis of C Pool Ratios 146 
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Sensitivity analyses examine how the distributions of model input values influence the distributions of 

model outputs. In our study, we considered pre-warming C-pool densities as a model input. We performed a 148 
sensitivity analysis to observe how the choice of pre-warming C pool densities and C-pool ratios would affect the 

model fits and posterior predictive distribution of C pool ratios.  150 
We compared the model outputs and post-warming response behavior of AWB and CON at equivalent C 

pool densities and ratios. The fraction of soil microbe biomass C (MIC) density to SOC density has been observed to 152 
vary approximately between 0.01 – 0.04 (Anderson and Domsch, 1989; Sparling, 1992), so we used those numbers 

as guidelines for establishing the ranges of the C pool densities and density ratios explored in our simulations. One 154 
portion of the analysis involved running HMC simulations in which we set the pre-warming MIC density at 2 mg C 

g-1 soil and then varied the SOC density from 50 to 200 mg C g-1 soil in increments of 25, stepping from 0.04 to 0.01 156 
in terms of MIC-to-SOC fraction.  A second portion of the analysis involved observing the effect of varying pre-

warming MIC from 1 to 8 mg C g-1 soil while holding pre-warming SOC to 100 mg C g-1 soil.  158 
For some combinations of the prior distributions and pre-warming steady state C pool densities 

(Supplemental Table 2), AWB HMC runs wandered into unstable parameter regimes that would prevent the 160 
algorithm from reliably running to completion. Consequently, we do not compare simulation results for AWB and 

CON with pre-warming SOC densities below 50 mg C g-1 soil. Other combinations of prior distribution and pre-162 
warming C pool density choices that were not necessarily biologically realistic allowed stable AWB runs with lower 

pre-warming SOC densities. 164 

2.6 Information Criteria and Cross-validation 

In addition to R2, we used the WAIC, LOO, and Log Pseudomarginal Likelihood (LPML) Bayesian 166 
predictive goodness-of-fit metrics to evaluate models with the meta-analysis warming response data. LPML is also 

an example of cross validation and is calculated similarly to LOO. However, LPML does not account for over-fitting 168 
or penalize for parameter count (Christensen et al., 2011). We used the ‘loo’ package available for R to calculate our 

WAIC and LOO values (Vehtari et al., 2017). A lower WAIC and LOO and a higher LPML indicate a more likely 170 
model for a given data set. 

3 Results 172 

3.1 Parameter Posterior Distributions 

We obtained posterior parameter distributions and fits to the univariate response ratio data for both AWB 174 
and CON across different pre-warming MIC-to-SOC ratios. Sampler diagnostics for the HMC runs generally 

indicated convergence for the Markov chains and usable posteriors (Supplemental Fig 5 – 7). We also tracked 176 
divergent transitions that indicate the presence of regions of parameter space that are too geometrically confined and 

difficult to explore by the HMC. Divergent transitions occurred in the AWB HMC runs (Supplemental Fig 9), 178 
though the ratios of divergent transitions to sampled iterations was relatively low for all runs, with none exceeding 

0.025. There were no divergent transitions in the CON runs. Effective sample proportion for parameters was 180 
generally satisfactory and greater than 0.3 for parameters across various MIC-to-SOC ratios, with total posterior 

sample sizes of 75,000 to 100,000 iterations (Supplemental Table 4).  182 

3.2 Model Behaviors 

The CON curve monotonically decreases in response ratio over time, whereas the AWB curve displays 184 
changes in slope sign (Fig 2). The difference in curve shape is in line with CON’s linear system and AWB’s non-

linear formulation with more parameters (Allison et al., 2010). By 50 years after warming, mean fit curves for AWB 186 
and CON return to 1.0 after their initial increase (Fig 3c-d), consistent with prior observations and expectations at 

steady state (van Gestel et al., 2018; Romero-Olivares et al., 2017). 188 
The 95% confidence interval of first the data point mean does not include the AWB mean, which could 

negatively impact AWB’s quantitative goodness-of-fit and information criteria metrics. However, the 95% model 190 
response ratio credible interval suggests that AWB is able to replicate the trend of response ratio increase 1-3 years 

following warming perturbation, which CON does not. The mean AWB fit also matches the data points after eight 192 
years more closely than CON. Visually, though, it is not clear which model provides the better fit. 

3.3 Sensitivity Analysis of Parameter Distributions to Pre-warming C Pool Densities and Density Ratios 194 
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 For both AWB and CON, higher pre-warming SOC corresponds to lower initial response ratio (Fig 3a-b). 

For CON, higher initial SOC reduces the magnitude of the mean fit slope and slows the return of the response curve 196 
to 1.0. For AWB, more time is needed to reach the peak response ratio and return to pre-warming response ratios. 

Changing the pre-warming MIC-to-SOC steady state pool size ratio by increasing MIC has a subtle effect on the fit 198 
curve; the magnitude and severity of slope changes decreases from MIC = 1 to MIC = 8 mg C g-1 soil (Supplemental 

Fig 1). Increasing MIC did not have an appreciable qualitative effect on CON fit. 200 
In addition to response ratio fit, we observed the influence of pre-warming MIC-to-SOC ratios on fractional 

SOC loss for AWB and CON following warming. The fractional SOC loss at 12.5 years for CON and AWB 202 
decreased as pre-warming SOC was increased (and hence, MIC-to-SOC ratio decreased). For CON, SOC loss 

ranged from 27.1% at SOC = 50 to 9.2% at SOC = 200 (Supplemental Fig 3). For AWB, it ranged from 17.2% at 204 
SOC = 50 to 8.1% at SOC = 200. Similarly, AWB SOC loss decreased from 16.3% to 11.3% as MIC was reduced 

from 8 to 1. In contrast, the CON SOC loss increased from 17.4% to 18.8% when MIC was reduced from 8 to 1.   206 
 

 Truncation of prior supports, or distribution domains, generally did not prevent posterior densities from 208 
retaining normal distribution shapes. Deformation away from Gaussian shapes was observed at SOC = 50 mg C g-1 

soil and SOC = 75 mg C g-1 soil for the densities of EaS for CON and EaV, EaK, and ECref for AWB. All CON and 210 
AWB parameter posterior densities were otherwise observed to be Gaussian from SOC = 100 mg C g-1 soil to SOC 

= 200 mg C g-1 soil. Example posterior densities and means for select model parameters at pre-warming SOC = 100 212 
mg C g-1 are plotted in Fig 4. Parameter posterior means corresponding to other pre-warming C pool densities and 

ratios are presented in Supplemental Table 3.  214 

3.4 Sensitivity Analysis of Quantitative Fit Metrics to Pre-warming C Pool Densities and Density Ratios 

  216 
 Fit metrics generally worsened as pre-warming steady state SOC increased for both CON and AWB (Fig 

5). However, LOO, WAIC, and R2 agree that fit quantitatively improved from SOC = 50 to SOC = 75, with LOO 218 
and WAIC suggesting a more pronounced improvement in fit than R2 due to overfitting penalties (Supplemental Fig 

8). From SOC = 50 to 75, LOO improved from -5.04 to -6.23, and WAIC improved from -5.73 to -9.85. LOO, 220 
WAIC, LPML, and R2 unanimously agree on trends of worsening fit quality from SOC = 125 to SOC = 200.  

Varying pre-warming steady state MIC appeared to slightly reduce fit quality across the various metrics as 222 
MIC ranged from 1 to 8 mg C g-1 soil (Supplemental Fig 4), though the trend was not consistent in LOO and WAIC. 

Since increasing MIC has the opposite effect on MIC-to-SOC ratio compared to increasing SOC, these results 224 
indicate no consistent effect for absolute changes to MIC-to-SOC ratio.  

4 Discussion 226 

Our study develops a quantitative, data-driven framework for model comparison that could be applied 

across different research questions, ecosystems, and scales. We demonstrated the novel deployment of WAIC and 228 
LOO, two more recently developed Bayesian goodness-of-fit metrics that estimate model predictive accuracy, to 

evaluate SBMs using data from longitudinal soil warming experiments. WAIC and LOO improve upon older and 230 
more frequently used metrics, such as AIC and DIC, by accounting for model complexity and overfitting of data in a 

more comprehensive, stable, and accurate fashion. 232 
We constrained the fitting of AWB and CON to biologically reasonable parameter space by fixing pre-

warming steady state C pool densities and establishing prior distributions informed by expert judgment 234 
(Supplemental Table 2). We observed that CON and AWB can both explain the soil response to warming in the 

meta-analysis data set (Fig 2) and that certain pre-warming soil C densities and density ratios for SOC and MIC 236 
correspond to better warming response fits (Fig 5).  

4.1 Model Responses to Warming over Time 238 

CON and AWB both displayed similar general trends in the progression of their response ratio curves 

following soil warming (Fig 2). The return of the curves to their pre-warming steady states aligns with previous 240 
literature which demonstrates that the magnitude of CO2 flux falls following a post-warming peak (Crowther et al., 

2016; Romero-Olivares et al., 2017).  242 
AWB, unlike CON, displays oscillations in its response ratios following warming due to its non-linear 

dynamics. However, it is unclear whether oscillations quantitatively aid AWB with its fit to our response ratio data 244 
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set. The presence of respiration oscillations has been observed in long-term warming experiments, such as the one 

taking place at Harvard Forest (Melillo et al., 2017). It is possible AWB would be quantitatively rewarded in 246 
goodness-of-fit metrics over CON for its ability to replicate oscillations in site-specific data sets such as those from 

Harvard Forest. 248 
For an additional check on model realism, we tallied SOC loss percentages from pre-warming SOC stocks 

after 12.5 years for AWB and CON. SOC losses ranged from 8.14% to 27.1% across both models (Supplemental Fig 250 
3). These results aligned with a recent comprehensive meta-analysis of 143 soil warming studies (Supplemental Fig 

10). The largest loss of 27.1%, occurring in CON at SOC = 50, is sizable, but the van Gestel et al. meta-analysis 252 
included 7 studies measuring losses greater than 20%, with the maximum loss observed at 54.4% (van Gestel et al., 

2018).  254 
For both AWB and CON, increasing pre-warming SOC reduced C loss fraction following the perturbation. 

Varying pre-warming MIC more prominently affected the fraction of SOC lost from AWB compared to CON, with 256 
soil C loss increasing as MIC increased. In CON’s case, there was a minimal decline in SOC loss as MIC was 

increased. The larger effect of increasing MIC on the fraction of SOC lost in AWB is likely due to MIC influence on 258 
SOC-to-DOC turnover, which is not a feedback included in the CON model. 

 260 
4.2 Sensitivity Analysis of C Pool Densities and Density Ratios 

 262 
We performed a sensitivity analysis to check whether the response ratio trends stayed consistent, 

biologically realistic, and interpretable across a range of pre-warming, steady state soil C densities and pool-to-pool 264 
density ratios. For instance, we imposed constraints to reflect that MIC-to-SOC density ratios range between 0.01 

and 0.04 across various soil types (Anderson and Domsch, 1989; Sparling, 1992). CON and AWB response ratio 266 
curves exhibited realistic values and qualitatively consistent shapes across all pre-warming SOC and MIC steady 

state densities, even at less realistic SOC densities above 100 mg C g-1 soil (Fig 3). There was enough uncertainty in 268 
the data that the 95% posterior predictive intervals for the model output always overlapped with the 95% confidence 

intervals of each fitted data point (Fig 2). In most cases, the posterior mean response ratio curve also fell within the 270 
95% data confidence interval. 

We were unable to initiate our pre-warming SOC steady state below 50 mg SOC g-1 soil with the priors and 272 
MIC-to-SOC ratios used for AWB. Under 50 mg SOC g-1 soil, AWB HMC runs would not reliably run to 

conclusion and would terminate due to ODE instabilities. Even at 50 mg SOC g-1 soil, we saw a reduction in 274 
independent and effective samples for certain parameters, namely EaV and EaK (Supplementary Table 13). We did 

not drop under 50 mg SOC g-1 soil for CON, as we sought to compare AWB and CON at similar MIC-to-SOC 276 
ranges. Similarly, we were unable to drop our pre-warming MIC steady state below 1 mg SOC g-1 soil. Our 

experience underscores the challenge of choosing realistic steady state soil C densities, density ratios, and prior 278 
distributions to obtain valid model comparisons limited to biologically realistic regimes.  

The information criteria and cross-validation fit metrics generally indicated higher relative probability and 280 
predictive performance for the data at lower pre-warming SOC values for AWB and CON (Fig 5). The fit results 

suggest that SOC density of the soil at the sites included in the meta-analysis was likely closer to the lower end of 282 
the SOC density ranges examined in our sensitivity analysis. A less pronounced trend toward better fits was 

observed as pre-warming MIC density was decreased while pre-warming SOC density was held constant 284 
(Supplemental Fig 4). No clear relationship was observed between MIC-to-SOC ratio and goodness-of-fit in the 

AWB and CON models.  286 
The worsening IC and CV results at higher SOC densities support the notion that pre-warming steady state 

soil C densities should not be initialized over 100 mg C g-1 soil in AWB and CON when fitting to this meta-analysis 288 
data set. The majority of the CO2 respired by soil microbes is sourced from surface soil (Fang and Moncrieff, 2005), 

and it is well-documented that the highest SOC densities are in the top 20 centimeters of soil (Jobbágy and Jackson, 290 
2000). Pre-warming SOC density was not observed to exceed 50 mg SOC g-1 soil at sites included in the meta-

analysis, reaching a maximum of 45 mg SOC g-1 soil for the top 20 cm in one study with alpine wetland soil (Zhang 292 
et al., 2014). 14C measurements of CO2 fluxes suggest that SOC densities representing the source of most 

heterotrophic respiration in topsoil range between 40 to 80 mg SOC g-1 soil (Trumbore, 2000).  294 

4.3 Parameter Space Exploration 

Truncating prior and posterior parameter distributions proved useful for establishing biological constraints 296 
and modestly deformed posterior densities for AWB and CON. From pre-warming SOC = 100 to SOC = 200, CON 

and AWB posterior densities showed little or no deformation from typical normal distribution shapes. Moderate 298 

https://doi.org/10.5194/bg-2020-23
Preprint. Discussion started: 19 February 2020
c© Author(s) 2020. CC BY 4.0 License.



 7 

posterior density deformation was observed for some parameters in both models at SOC = 50 and 75 (ECref for AWB 

and EaS for CON). Even so, most of the other parameter posterior densities still remained undeformed at those SOC 300 
values. Thus, prior truncation generally did not prevent posterior means from falling within biologically realistic 

intervals, suggesting that priors were appropriately informed and chosen. 302 
A small frequency of divergent transitions was detected for the AWB HMC runs. A more thorough 

description of the theory, computation, and implications of divergent transitions can be found in literature focusing 304 
on the Hamiltonian Monte Carlo algorithm (Betancourt, 2016, 2017). The number of divergent transitions generally 

increased as the pre-warming MIC-to-SOC steady state ratio was reduced (Supplemental Fig 9). Prior truncation and 306 
the fixing of select parameters to constrain the pre-warming steady state mass values for biological realism could 

have played a combined role in generating the Markov chain divergences by hindering the smooth exploration of 308 
parameter space. We were unable to eliminate divergent transitions by adjusting HMC parameter proposal step size, 

suggesting that other methods, such as modification of the HMC algorithm itself or introduction of auxiliary 310 
parameters to AWB that reduce correlation between existing model parameters may be more applicable in reducing 

divergent transitions in our case (Betancourt and Girolami, 2015). Additionally, the interaction between the ranges 312 
of values used for the prior distributions and the limited number of observations in the data set could have 

contributed to the shaping of geometric inefficiencies (Betancourt, 2017). 314 

4.4 Applying and Interpreting Bayesian Predictive Fit Metrics 

With respect to the IC and CV metrics, in both Fig 5 and Supplementary Fig 5, there is disagreement 316 
between LOO and WAIC versus LPML. LPML displays more consistent trends for CON and AWB across the range 

of pre-warming SOC values with a unidirectional change in slope. LPML is calculated similarly to LOO but does 318 
not account for overfitting and parameter count (Gelfand and Dey, 1994; Gelman et al., 2014). The computational 

difference accounts for the divergence between the results of LPML and those of LOO and WAIC. The effective 320 
parameter count and penalty for overfitting in both the WAIC and LOO calculations generally increases as pre-

warming SOC is reduced (Supplemental Fig 8a and 8b). Thus, while the LPML results appear clearer, we do not 322 
recommend use of LPML by itself to quantitatively compare model fits because it does not fully account for the 

impacts of differing model structure, parameterization, and parameter count on overfitting for a data set. 324 
General agreement between WAIC, LOO, and LPML reinforces the usage of IC and CV metrics alongside 

usage of R2. R2 is not suitable as sole quantitative metric for model evaluation and selection. The traditional 326 
unadjusted R2 calculation does not have a cost function for parameter counts. R2 estimates the strength of the 

relationship between a linear model and a dependent variable and is calculated from the variance in data and 328 
residuals separating model outputs from observations. The metric cannot be applied to nonlinear models. Model 

selection involves a relative comparison of models, but the value of R2 can result in misleading conclusions 330 
regarding absolute goodness of fit of a model to data. For instance, a model appropriate for a data set can correspond 

to a low R2 calculation, while a flawed model can correspond to a high R2 (Spiess and Neumeyer, 2010). Adjusted 332 
R2 accounts for model parameter count, but still shares other pitfalls with non-adjusted R2. 

4.5 Conclusion and Future Directions 334 

Recent SBM comparisons have been unable to demonstrate the superiority of one model over another 

because the uncertainty boundaries of the data were not sufficient for distinguishing model outcomes (Sulman et al., 336 
2018; Wieder et al., 2018). Similar to Sulman et al., our results indicate that more data is needed to constrain model 

outputs and to verify the strengths and limitations of linear versus non-linear SBMs in Earth system modeling.  338 
Consequently, future SBM comparisons would benefit from additional data collection efforts sourced from 

long-term ecological research experiments. The limited number of longitudinal soil warming studies presents a 340 
challenge for facilitating site-specific model comparisons. We addressed this issue by using meta-analysis data to 

aggregate warming responses across sites, but this approach does not provide site-specific parameters. Additional 342 
data from ongoing and future field warming studies in the vein of the Harvard Forest and Tropical Responses to 

Altered Climate experiments will be of critical importance for model testing (Melillo et al., 2017; Wood et al., 344 
2019). Model parameters could also be better constrained through the use of multivariate data sets, for example 

microbial biomass dynamics in addition to soil respiration.  346 
Our approach can also be used to compare the predictive accuracy of linear models that only implicitly 

represent microbial activity to that of more complex non-linear SBMs that explicitly represent the Michaelis-Menten 348 
dynamics of soil microbial processes, such as CORPSE (Sulman et al., 2014) and MIMICS (Wieder et al., 2015). 
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Such comparisons will help determine if inclusion of more detailed microbial dynamics in models offers predictive 350 
advantages that can overcome the overfitting burdens associated with an increase in parameter count. 

Despite limited data availability, the development of our formalized, statistically rigorous approach for 352 
model comparison and evaluation is a critical step toward the goal of improving the forecasting of global SOC levels 

and soil emissions through the rest of the 21st century. Our initial results indicate promise in continued development 354 
of our approach to better evaluate a range of models that vary widely in structure and parameter count. 

Code and Data Availability 356 

The R scripts, Stan code, and respiration data set used for HMC model fitting along with the original soil respiration 

meta-analysis data set (Romero-Olivares et al., 2017) are available from the directory located at 358 
https://osf.io/7mey8/?view_only=af1d54f858c34c41ab4854551d015896 (Xie et al., 2019).  
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Figure 1: Diagrams of the pool structures of the (a) CON model; and (b) AWB model. Pools are shown within 480 
circles including soil organic carbon (SOC), dissolved organic carbon (DOC), and microbial (MIC) pools. AWB has 

SOC, DOC, and MIC pools as in CON, but also an extra enzymatic (ENZ) pool. AWB additionally differs from 482 
CON in its non-linear feedbacks and assumption that MIC can influence SOC-to-DOC turnover through the ENZ 

pool. 484 
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Figure 2: Distribution of fits of (a) CON; and (b) AWB to the meta-analysis data from Romero-Olivares et al., 496 
2017. Open circles show the meta-analysis data points. Blue vertical lines mark the 95% confidence interval for each 

data point calculated from the pooled standard deviation. The black line indicates the mean (and median) model 498 
response ratio fit. The orange shading marks the 95% posterior predictive interval for the fit. For (a), pre-warming 

steady state soil C densities were set at SOC = 100 mg C g-1 soil, MIC = 2 mg C g-1 soil, DOC = 0.2 mg C g-1 soil. 500 
For (b), pre-warming steady state soil C densities were set at SOC = 100 mg C g-1 soil, MIC = 2 mg C g-1 soil, DOC 

= 0.2 mg C g-1 soil, and ENZ = 0.1 mg C g-1 soil.  502 
 

 504 
 

 506 
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 508 
Figure 3: Intra-model comparisons of mean posterior predictive response ratio fits for AWB and CON across 

different MIC-to-SOC ratios. Open circles show the meta-analysis data points for reference. The blue, black, and red 510 
lines indicate model mean fits corresponding to different pre-warming-perturbation steady state SOC values of 50 

mg C g-1 soil, 100 mg C g-1 soil, and 200 mg C g-1 soil. The dashed gray line indicates the steady state expectation at 512 
the response ratio of 1.0. Mean fits are plotted in order of (a) CON; and (b) AWB over the time span of the data and 

(c) CON; and (d) AWB over 57 years. 514 
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 516 
Figure 4: 95% credible areas for model parameters corresponding to pre-warming steady state SOC = 100 mg C g-1 

soil, DOC = 0.2 mg C g-1 soil, MIC = 2 mg C g-1 soil, and (for AWB) ENZ = 0.1 mg C g-1 soil. Yellow shaded 518 
regions represent 80% credible areas and vertical purple lines indicate distribution mean. (a) CON activation energy 

parameters EaS, EaD, EaM; (b) CON C pool partition fraction parameters aDS, aSD, aM, and aMS; (c) AWB activation 520 
energy parameters EaV, EaVU, EaK, EaKU; (d) AWB parameters Vref, ECref, and aMS. Vref is the SOC Vmax at the 

reference temperature 283.15 K, ECref is the carbon use efficiency fraction at the reference temperature, and aMS is 522 
the fraction parameter representing the proportion of dead microbial biomass C transferred to the SOC pool. 

Credible areas for AWB parameters VUref and mt are shown in Supplemental Fig 2 because of differing horizontal 524 
axes scales. 
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 526 
Figure 5: Fit metric versus initial steady state SOC for AWB and CON models for (a) LOO; (b) WAIC cross-

validation; (c) LPML; and (d), R2 values. Pre-perturbation steady state MIC, DOC, and ENZ (for AWB) is held 528 
constant as pre-perturbation SOC is varied. 
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